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• The tutorial solutions are written for reference and proofs will be sketched briefly. You
should try to fill in the details as an exercise. The solutions for Homework optional ques-
tions can be found in Homework solutions, which would be released after the deadlines.
Please send an email to echlam@math.cuhk.edu.hk if you have any further questions.

1. Since Zp is cyclic, fix the generator 1 ∈ Zp, then every automorphism f ∈ Aut(Zp) is
determined by where it sends the generator 1 to. Recall that there are ϕ(p) = p− 1 many
generators of Zp corresponding to the number of integers that are coprime to p, where ϕ is
the Euler totient function. In other words, for each k = 1, ..., p−1, fk(1) := k determines
an automorphism of Zp. Now given k1, k2, notice that fk1 ◦ fk2(1) = k1k2 mod p. Now
let Z×

p denotes the multiplicative group of units of (the ring) Zp, i.e. it consists of elements
in {0, 1, 2, ..., p−1} that are invertible. By Fermat’s little theorem, every nonzero element
in Zp admits a multiplicative inverse, so that Z×

p = Zp − {0} as set. As such, we may
define F : Z×

p → Aut(Zp) by k 7→ fk. It is a group homomorphism since F (i·j) : 1 7→ ij
and F (i) ◦ F (j) : 1 7→ i · j are equal. Then F is an isomorphism since it is injective and
both groups have order p− 1. Finally, Z×

p
∼= Zp−1 holds true according to Fermat’s little

theorem again, since any k ∈ {1, ..., p− 1} is a cyclic generator.

For Z, similar to above it is generated by 1, therefore we just needs to send it to other
generators. But Z only has two generators {1,−1}. Therefore Aut(Z) ∼= Z2. Finally
for Z2 it is more complicated. It has standard generators {(1, 0), (0, 1)}. To determine
f ∈ Z2 is to determine what are pairs of generators of Z2. Notice that if (a, b), (c, d) is a
set of generators of Z2, then we can generate (1, 0), (0, 1) from them, therefore there are
α, β, γ, δ ∈ Z so that (

α β
γ δ

)(
a c
b d

)
=

(
1 0
0 1

)
.

In other words,
(
a c
b d

)
is an invertible matrix with integer coefficients. Furthermore,

composition of two automorphisms corresponds to multiplication of matrix. Concretely,
what we have is an isomorphism GL2(Z) → Aut(Z2) where we associate to each matrix

A =

(
a c
b d

)
the automorphism fA : (1, 0) → (a, b) and fA : (0, 1) → (c, d).

2. First notice that Tg · T (g−1) = T (gg−1) = Te = e implies that T (g−1) = (Tg)−1.
Since G is a finite group, to show that g 7→ g−1Tg is surjective amounts to showing
that it is injective. Suppose that g−1Tg = h−1Th, then we have gh−1 = Tg(Th)−1 =
TgT (h−1) = T (gh−1). By assumption this implies gh−1 = e, so g = h and the map
g 7→ g−1Tg is indeed injective.

3. Following question 3, we know that any h ∈ G can be expressed as g−1Tg. If T 2 = Id,
then Th = T (g−1) · T 2(g) = T (g−1)g = (g−1Tg)−1 = h−1 for any h ∈ G. So T is
simply given by inverting an element, however if this is indeed a automorphism, then for



arbitrary, h1, h2, T (h1h2) = h−1
2 h−1

1 , meanwhile Th1Th2 = h−1
1 h−1

2 . This shows that G
is automatically abelian.

4. Recall that the dihedral group D2n can be generated by a rotation r and a reflection s,
subject to the condition that rn = e, s2 = e, and rsrs = e. Alternatively, you can just
think of r as rotation by 2π/n counterclockwise, and s as just a reflection about some
diagonal of the regular n-gon. The relation rsrs = e geometrically just means that rs is
again a reflection, and we can rewrite it as rs = sr−1 = srn−1. Then inductively one can
see rks = srn−k. This equation already tells us that rk is not in the center of D2n unless
k = n− k, this forces n = 2k to be even.

As for reflection elements in D2n, they can be written as rks for k = 0, ..., n − 1. Then
consider (rk)sr = rkr−1s ̸= rk+1s. This shows that rks ̸∈ Z(D2n) as well. Therefore we
conclude that

Z(D2n) =

{
1, if n is odd.
{e, rn/2}, if n is even.

5. There is an obvious map φ : H × K → G by φ(h, k) = hk ∈ G. The claim is
that this is a group isomorphism. Recall from tutorial 3 question that hk = kh for any
h ∈ H and k ∈ K because hkh−1k−1 ∈ H ∩ K = {e}. Therefore φ(h1h2, k1k2) =
h1h2k1k2 = h1k1h2k2 = φ(h1, k1)φ(h2, k2), and φ(e, e) = ee = e so φ is a well-defined
homomorphism. This is surjective by the condition that any g ∈ G can be written as
g = hk = φ(h, k). It is injective because φ(h, k) = hk = e implies that h = k−1 ∈
H ∩K = {e} ⇒ h = k = e.


